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Two Lands

“England and America are two lands separated by a common language”

–George Bernard Shaw / Oscar Wilde

Separated, but no common language?

I The Land of Multiple Classifier Systems

I The Land of Feature Selection

We’re not talking about...

I Feature selection for ensemble members

I Combining feature sets (e.g. Somol et al, MCS 2009)

So what are we talking about...?
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The “Duality” of MCS and FS

“Dimensionality reduction and MCS should complement,
not compete with each other” ... “aspects of feature
selection/extraction procedures may suggest new ideas to
MCS designers that should not be ignored.”

Sarunas Raudys (Invited talk, MCS 2002)

...“[MCS] can therefore be viewed as a multistage
classification process, whereby the a posteriori class
probabilities generated by the individual classifiers are
considered as features for a second stage classification
scheme. Most importantly [...] one can view classifier
fusion in a unified way. ”

Josef Kittler (PAA vol 1(1), pg18–27, 1998)



A common language?

Mutual Information : zero iff X ⊥⊥ Y

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(xy) log
p(xy)
p(x)p(y)

Conditional Mutual Information : zero iff X ⊥⊥ Y |Z

I(X;Y |Z) =
∑
x∈X

∑
y∈Y

∑
z∈Z

p(xyz) log
p(xy|z)

p(x|z)p(y|z)

To understand why, we journey to the Land of Feature Selection...



The Land of Feature Selection - “Wrappers”

PROCEDURE : WRAPPER
Input: large feature set Ω
Returns: useful feature subset S ⊆ Ω
10 Identify candidate subset S ⊆ Ω
20 While !stop criterion()

Evaluate error of a classifier using S.
Adapt subset S.

30 Return S.

Pro: high accuracy from your classifier
Con: computationally expensive!



The Land of Feature Selection - “Filters”

PROCEDURE : FILTER
Input: large feature set Ω
Returns: useful feature subset S ⊆ Ω
10 Identify candidate subset S ⊆ Ω
20 While !stop criterion()

Evaluate utility function J using S.
Adapt subset S.

30 Return S.

Pro: generic feature set, and fast!
Con: possibly less accurate, task-specific design is open problem



A Problem in FS-Land: Design of Filter Criteria

Feature space Ω = {X1, ..., XM}.
Consider features for inclusion/exclusion one-by-one.

Question: What is the utility of feature Xi?

Mutual Information with target Y .

Jmi(Xi) = I(Xi;Y )

Higher MI means more discriminative power.
3 Encourages relevant features.
7 Ignores possible redundancy.

- may select two almost identical features
... waste of resources!
... possible overfitting!



A Problem in FS-Land: Design of Filter Criteria

Q. What is the utility of feature Xi?

Jmi(Xi) = I(Xi; Y )
“its own mutual information with the target”

Jmifs(Xi) = I(Xi; Y )−
∑

Xk∈S I(Xi; Xk)
“as above, but penalised by correlations with features already chosen”

Jmrmr(Xi) = I(Xi; Y )− 1
|S|

∑
Xk∈S I(Xi; Xk)

“as above, but averaged, smoothing out noise”

Jjmi(Xi) =
∑

Xk∈S I(XiXk; Y )
“how well it pairs up with other features chosen”



The Confusing Literature of Feature Selection Land

Criterion Full name Author
MI Mutual Information Maximisation Various (1970s - )
MIFS Mutual Information Feature Selection Battiti (1994)
JMI Joint Mutual Information Yang & Moody (1999)
MIFS-U MIFS-‘Uniform’ Kwak & Choi (2002)
IF Informative Fragments Vidal-Naquet (2003)
FCBF Fast Correlation Based Filter Yu et al (2004)
CMIM Conditional Mutual Info Maximisation Fleuret (2004)
JMI-AVG Averaged Joint Mutual Information Scanlon et al (2004)
MRMR Max-Relevance Min-Redundancy Peng et al (2005)
ICAP Interaction Capping Jakulin (2005)
CIFE Conditional Infomax Feature Extraction Lin & Tang (2006)
DISR Double Input Symmetrical Relevance Meyer (2006)
MINRED Minimum Redundancy Duch (2006)
IGFS Interaction Gain Feature Selection El-Akadi (2008)
MIGS Mutual Information Based Gene Selection Cai et al (2009)

Why should we trust any of these? How do they relate?



The Land of Feature Selection: A Summary

Problem: construct a useful set of features

I Need features to be relevant and not redundant.

Accepted research practice: invent heuristic measures

I Encouraging “relevant” features

I Discouraging correlated features

Sound familiar? For ‘feature’ above, read ‘classifier’...



What would someone from the Land of MCS do?

MCS inhabitants believe in their (undefined) Diversity God.

But, MCS-Land is just one district in the Land of Ensemble Methods.

Other districts are:

I The Land of Regression Ensembles

I The Land of Cluster Ensembles

I The Land of Semi-Supervised Ensembles

I The Land of Non-Stationary Ensembles

And possibly others, as yet undiscovered...



The Land of Regression Ensembles

Loss function : (f(x)− y)2

Combiner function : f(x) = 1
M

∑M
i=1 fi(x)

Method:
Take objective function, decompose into constituent parts.

(f − y)2 =
1
M

M∑
i=1

(fi − y)2 − 1
M

M∑
i=1

(fi − f)2



An MCS native visits the Land of Feature Selection

Loss function : I(F ;Y )

‘Combiner’ function : F = X1:M (joint random variable)

Method:
Take objective function, decompose into constituent parts.

I(X1:M ; Y ) =
∑
∀i

I(Xi; Y )

+
∑
∀i,j

I(Xi, Xj , Y )

+
∑
∀i,j,k

I(Xi, Xj , Xk, Y )

+
∑

∀i,j,k,l

I(Xi, Xj , Xk, Xl, Y )

... ... ...

Multiple “levels” of correlation!
Each term is a multi-variate mutual information! (McGill, 1954)



Linking theory to heuristics....

Take only terms involving Xi we want to evaluate - exact expression:

I(Xi; Y |S) = I(Xi; Y )−
∑
k∈S

I(Xi; Xk) +
∑
k∈S

I(Xi; Xk|Y ) +
∑

j,k∈S

I(Xi, Xj , Xk, Y ) + ... +

Jmi = I(Xi; Y )

Jmifs = I(Xi; Y )−
∑
k∈S

I(Xi; Xk)

Jmrmr = I(Xi; Y )−
1

|S|
∑
k∈S

I(Xi; Xk)

and others can be re-written to this form...

Jjmi =
∑
k∈S

I(XiXk; Y )

= I(Xi; Y )−
1

|S|
∑
k∈S

I(Xi; Xk) +
1

|S|
∑
k∈S

I(Xi; Xk|Y )



A “Template” Criterion

Jmifs = I(Xi; Y )−
∑
k∈S

I(Xi; Xk)

Jmrmr = I(Xi; Y )−
1

|S|
∑
k∈S

I(Xi; Xk)

Jjmi = I(Xi; Y )−
1

|S|
∑
k∈S

I(Xi; Xk) +
1

|S|
∑
k∈S

I(Xi; Xk|Y )

Jcife = I(Xi; Y )−
∑
k∈S

I(Xi; Xk) +
∑
k∈S

I(Xi; Xk|Y )

Jcmim = I(Xi; Y )− maxk

{
I(Xi; Xk)− I(Xi; Xk|Y )

}

J = I(Xn;Y )− β
∑
∀k∈S

I(Xn;Xk) + γ
∑
∀k∈S

I(Xn;Xk|Y )



The β/γ Space of Possible Criteria

0 0.2 0.4 0.6 0.8 1
0    

0.2  

0.4  

0.6  

0.8  

1    

γ

β JMI n=3

JMI n=4

MIFS / MRMR n=2

MRMR n=3

MRMR n=4

FOU / CIFE
JMI n=2

MIM

I(X1:M ;Y ) ≈ I(Xn;Y )︸ ︷︷ ︸
relevancy

− β
∑

k

I(Xn;Xk)︸ ︷︷ ︸
redundancy

+ γ
∑

k

I(Xn;Xk|Y )︸ ︷︷ ︸
conditional redundancy

.



The β/γ Space of Possible Criteria

I(X1:M ;Y ) ≈ I(Xn;Y )︸ ︷︷ ︸
relevancy

− β
∑

k

I(Xn;Xk)︸ ︷︷ ︸
redundancy

+ γ
∑

k

I(Xn;Xk|Y )︸ ︷︷ ︸
conditional redundancy

.



Exploring β/γ space
Brown

Figure 3: ARCENE data (cancer diagnosis).

Figure 4: GISETTE data (handwritten digit recognition).
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Exploring β/γ space

Seems straightforward? Just use the diagonal? Top right corner?
But... remember these are only low order components.

Easy to construct problems that have ZERO in low orders, and
positive terms in high orders.

I e.g. data drawn from a Bayesian net with some nodes
exhibiting deterministic behavior. (e.g. parity problem).



Image Segment data

3-nn classifier (left), and SVM (right).
Pink line (‘UnitSquare’) is top right corner of β/γ space.



GISETTE data

Low order components insufficient ...
....heuristics can triumph over theory!



Exports & Imports

Exported a perspective from the Land of MCS...

...solved an open problem in the Land of FS.

But could the MCS natives also learn from this?



Exports & Imports : Understanding Ensemble Diversity

(Step 1) Take an objective function...
- log-likelihood: ensemble combiner g, with M members...

L = Exy

{
log g(y|φ1:M )

}
(Step 2) ...decompose into constituent parts.

L = const + I(φ1:M ;Y )︸ ︷︷ ︸
ensemble members

− KL( p(y|x) || g(y|φ1:M ) )︸ ︷︷ ︸
combiner

“Information Theoretic Views of Ensemble Learning”.
G.Brown, Manchester MLO Tech Report, Feb 2010



Exports & Imports : Understanding Ensemble Diversity

∑ ∑∑ ∑∑
= +== +==

+−≈
M

j

M

jk
ji

M

j

M

jk
ji

M

i
iM YXXIXXIYXIYXI

1 11 11
:1 )|;();();();(

“diversity”“relevancy”

“An Information Theoretic Perspective on Multiple Classifier Systems”, MCS 2009.



Exports & Imports : Understanding Ensemble Diversity
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“An Information Theoretic Perspective on Multiple Classifier
Systems”, MCS 2009.
Zhou & Li, “Multi-Information Ensemble Diversity” (tomorrow
9.45am!)



Exports & Imports : Understanding Ensemble Diversity
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Exports & Imports : Understanding Ensemble Diversity
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Exports & Imports : Model Selection

Multi-variate mutual information can be positive or negative!

M. Zanda, PhD Thesis, University of Manchester, 2010.



Exports & Imports : Model Selection

Y

X1 X2 X3

Fork ANB

Y
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Figure 1.4: Two different ways of augmenting a Näıve Bayes classifier by imposing
a fork (left) and a collider (right) structure to the feature set X1, X2 and X3.

{X1, X2, X3}.
We further decide to restrict our attention to augmented Näıve Bayes net-

works for two main reasons. The first one is that these generative models are

particularly suited for classification problems, as all the features are related to

the class predictions, and therefore they all contribute to the estimation of the

class posterior distribution. The second one is based on the success that the Näıve

Bayes classifier, despite its unrealistic independence assumption has shown, by

competing with less restrictive classifiers such as decision trees. Since augment-

ing a Näıve classifier has the effect of making less restrictive assumptions about

the model, this approach might lead to an improvement in classification accuracy

[FGG97].

In particular we compare augmented Näıve Bayes classifiers whose feature

probability distribution factorises into a fork structure (which is a Markov chain),

with networks whose features factorise into a collider structure (which is a non

Markov chain). For clarity of exposition we refer to these two network models as

Fork Augmented Näıve Bayes (Fork ANB) and Collider Augmented Näıve Bayes

(Collider ANB). The probabilistic graphical model associated with each of these

models are shown in Fig. 1.4.

By restricting the feature space to be of size three, there are only three ways

of permuting features in both a fork or a collider configuration, for a total of

six possible models. As we explained in Subsection 1.1.2, the sign of interac-

tion information provides an indication of the existing dependency configuration

between the random variables, but it cannot distinguish between permutation

invariant models within the same configuration. For instance, if the interaction

information measured between three random variables is positive, it follows that

7

M. Zanda, PhD Thesis, University of Manchester, 2010.



Exports & Imports : Model Selectionmodels belonging to the same class. For simplicity of exposition we name this ap-

proach random subspace Averaged Dependency Estimators (rsADE). Algorithm

1 illustrate how base classifiers are trained accordingly to rsADE.

Algorithm 1 Ensemble Method rsADE

1 Split D into TR, TS
for i = 1 : T do

Randomly pick 3 features Si = {X1, X2, X3}
Build all possible collider models from TR(Si)
Build all possible fork models from TR(Si)
Choose the most accurate model class C on TR(Si)
Build ADE from this model class

end for

In this section we propose an alternative approach to build averaged depen-

dency estimators over random subspaces of the feature set. We use the sign of

interaction information to select a model class prior to the training phase, as

illustrated in Algorithm 2.

The aim of this experiment is to quantify the effects of these properties on

the ensemble performances.

Algorithm 2 Ensemble Method irsADE

1 Split D into TR, TS
for i = 1 : T do

Randomly pick 3 features S = {X1, X2, X3}
if I(S) > 0 then

Build all possible collider models from TR(Si)
else

Build all possible fork models from TR(Si)
end if
Build ADE

end for

1.3.1 Comparison with AODE

Where we show how the AODE built over the whole feature space shows a better

accuracy, but it requires more computational time.

1.4 Discussion
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Exports & Imports : Model Selection
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Figure 3.5: Mushroom dataset: rsmADE vs irsmADE – Test Error mean and
95% confidence interval
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Figure 3.6: idaimage dataset: rsmADE vs irsmADE
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Mushroom (left) and Image Segment (right).
Performance almost as good... but much faster to train...

Usually 5− 10× faster, sometimes up to 90×.
Speedup proportional to arity of features.



Current work: other multivariate mutual informations...

The multi-variate information used here is not the only one...

I “Interaction Information” (McGill, 1954) - this work

I “Multi-Information” (Watanabe, 1960) - Zhou & Li: Thu 9.45am

I “Difference Entropy” (Han, 1980) - similar to McGill

I “I-measure” (Yeung, 1991) - pure set theoretic framework

G. Brown,

“Some Properties of Multi-variate Mutual Information”, (in preparation)



Conclusions

It’s getting really hard to contribute meaningful research to MCS.
... and to ML/PR in general!

I I’m starting to look at importing ideas from other fields

I Information Theory seems natural

I Knowledge can flow both ways


